ユーザーズマニュアル

MagicProcessorK

4.8v24D

処理機能無

有限会社 アイオーテクニック

www.iotechnic.co.jp

〒226-0027 神奈川県横浜市緑区長津田 6-21-13 TEL(045)532-5114

1-1. はじめに	2
1-2. 各部名称	3
2-1. インストール	4
2-2.アプリケーションの実行方法	6
2-3. コマンドラインオプションの説明	<u>6</u>
3-1.本体の測定起動方法(オフライン)	7
3-2.水圧起動による測定起動方法	9
3-3. 収録データを素早く確認	9
3-4. 収録データのコピーと確認	<u>10</u>
4-1. 生データグラフ	<u>11</u>
4-2. 生データグラフの編集	<u>12</u>
4-3. 生データ表	<u>13</u>
4-4. 生データの修正	<u>13</u>
4-5. 成分流速2次元グラフ	<u>14</u>
4-6.処理結果グラフ	<u>14</u>
4-7.処理結果グラフの編集	<u>15</u>
4-8.処理結果表	16
4-9.処理結果表の編集	<u>16</u>
4-10. 処理結果の修正	<u>17</u>
4-11. パワースペクトル	17
4-12. 処理結果項目	<u>19</u>
5-1. 印刷	20
5-2. プリンターの設定	20
6-1. メニュー [ファイル]	<u>21</u>
6-2. メニュー [編集]	22
6-3. メニュー [表示]	22
6-4. メニュー [処理]	23
6-5. メニュー [ウィンドウ]	23
6-6. メニュー [ヘルプ]	24
6-7.ポップアップメニュー(右クリックメニュー)	24
6-8. ツールバー	25
6-9. ステータスバー	25
7-1. ファイル	<u>26</u>
7-2. 処理結果Rファイルを開く	27
7-3. 測定日時の更新	28
7-4.測定時間一測定間隔の編集	<u>28</u>
7-5. テキストデータファイルに変換	<u>29</u>
7-6.初期化ファイル	<u>30</u>
7-7. 測定条件設定化ファイル(Index62. txt)	<u>30</u>
	<u>31</u>
S = Z : E X C ∈ I じ衣の貼り付け	31
8 - 3. EXCEI ビグフノの貼り付け 9 - 4. Weind あったりけけ	31
	31
るーっ. vvora ビグフノの貼り1117 ロー1 測定タイムチャート	<u>3 </u> 2 0
シート 別たライムノマード	<u>ں د</u>

1-1. はじめに - [関連項目 インストール方法 アプリケーションの実行方法]

MagicProcessorK ¹ は、WAVE HUNTER24シリーズ(WH-600シリーズ、"本体"とも表記します)によって作成され た処理結果Rファイル(WH***R.H10、***は3桁の機械番号)と、マスターファイル(WH***M.H10)から、作表とグラフの描画を 行います。このパッケージに処理機能はありません

ビルトインMgicProcessorの処理項目

測定データの処理は、本体にビルトインされたMagicProcessorで実行されています。下表の項目が本体で処理され、S Dカードに収録されています。

波高処理項目	最高波高・周期、1/10最大波高・周期、有義波高・周期、平均波高・周期、波数、水深、η rms、歪み 度(Skewness)、尖鋭度(Kurtosis)、水位、長周期最高波高・周期、長周期有義波高・周期
波向処理項目	共分散法による平均波向、主波向、平均分散角、方向集中係数、波峯長パラメーター
流速処理項目	平均流速、平均流向

表示機能

Windowsの機能(色、フォントの選択、マルチウィンドウなど)を、フルに生かした表と、グラフの表示ができます。上表の項目の中から、自由に選んで表示できます。

印刷機能

Windowsの印刷機能(色、フォント、用紙、縦横印刷の選択など)を、そのまま利用して、表とグラフの印刷ができます。グラフや表は、マウスでコピーして、WordやExcelのドキュメントに、貼り付けることができます。

1-2. 各部名称 – [関連項目 生データグラフ 生データ表 処理結果グラフ 処理結果表 パワースペクトル]

2-1. インストール - [関連項目 アプリケーションの実行方法]

. _____

配布のCDの中の"Setup. exe"を右クリックして[管理者として実行]を指定し、実行して下さい。セットアッププログラムの指示に、応答してインストールして下さい。インストール中に、下図の[ディレクトリの変更]ボタンをクリックして、インストール先のディレクトリ(フォルダ)を下記のように変更してください。

. _ ...

変更前:	C:¥Progran	n Files¥M	IK48¥	変更後:	C:¥MK48¥	
🛃 MagicProcessor	K V4.8 セットアップ					\times
セットアッフを開始す	るには次の水沟	を別ックして	ください。			
Ŀ	この本なりを切 ディレクトリロモット	ックすると Ma アップされまう	gicProcessor⊧ ∮°o	K V4.8 77	ツケーションが指定された	1
						1
C:¥MK48¥					ディレクトリ変更(<u>C</u>)	
		終	7(2)			

- 注1. "システムにある一部のシステムファイルが最新のものでないので、セットアップを続行できません。....."の問い合わせがありましたら、[OK]をクリックして下さい。"Windowsを再起動しますか?...."の問い合わせに、[はい] をクリックします。Windowsが再起動されましたら、セットアップを再度、行います。
- 注2. "コピーしようとしているファイルのバージョンは、システムに存在するファイルより古いか、または同じです。....." の問い合わせには、[はい]をクリックしてください。

外字の登録

 パソコンの画面の左下隅の[スタート]を右クリックして、[Windows PowerShell(管理者)]を実行します。下図のように、 配布CD(例では、pドライブ)の"eudc2000"フォルダのファイル(eudc. tteと、eudc. euf)を、パソコンのc: ¥ windows ¥ fontsにコピーします。

≥ 管理者: Windows PowerShell \times _ Windows PowerShell Copyright (C) Microsoft Corporation. All rights reserved. ^ 新しいクロスプラットフォームの PowerShell をお試しください https://aka.ms/pscore6 PS C:¥₩indows¥system32> <mark>copy</mark> p:¥eudc2000¥eudc.* c:¥windows¥fonts PS C:¥₩indows¥system32> <mark>cd</mark> c:¥windows¥fonts C:¥windows¥fonts> dir eudc.* ディレクトリ: C:¥windows¥fonts LastWriteTime Length Name Mode a----2018/09/13 2018/09/13 14:39 14:39 52554 EUDC.EUF 28504 EUDC.TTE a----PS C∶¥windows¥fonts≻

例: copy p:¥eudc2000¥eudc. * c:¥windows¥fonts

2. 同様に左下隅の[スタート]を右クリックして、[ファイル名を指定して実行]で、"eudcedit"とキーインして、実行します。登録した外字が、下図のように、表示されれば完了です。[OK]をクリックして"cm"の文字を確認して下さい。"外字エディタ"を終了して、インストールを終了します。

	_	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F	
F040	cn	/s	g/	()	÷	₽	٠	•	dш	/3	mm	Шg	2			í
F050		Ø	12	∅	Ø	6	Ø	1	3	3							
F060																	
F070																	
F080																	
F090																	
		2	5-	-K	FO4	0			77:	7H	ţ	ĸτ					
C	11	I	77	M)k	EUD	с											

システム日時の表現

MagicProcessork 👼は、下の日時の表現しか扱えません。Windowsの設定が、異なる場合は変更して下さい。[スター

ト]を右クリックして[ファイル名を指定して実行]で、"control"とキーインして、"コントロールパネル"を実行します。"コントロ ールパネル"ーアイコン[地域]ータブ[形式]ー[日付(短い形式)]と、[時刻(長い形式)]を下のように合せて下さい。 [日付(短い形式)] yy/MM/dd [時刻(長い形式)] H:mm:ss

動作確認OS

Windows8, Windows10, Windows11

インストールフォルダ

MagicProcessork 10: ¥MK48¥"のフォルダにインストールします。

2-2. アプリケーションの実行方法 - [関連項目 初期化ファイル]

MagicProcessorKは、下記の手順で、ディスクトップにショートカットを作成してから、実行します。

- 1. ファイル "C: ¥MK48¥MK48. EXE"を、Windowsの "ディスクトップ"に、ドラッグアンドドロップし、ショートカットを作成します。
- 2. "ディスクトップ"にできた、アイコンでをダブルクリックしてMagicProcessorKを実行します。

"ディスクトップ"のアイコン"MK48 EXEへのショートカ		~
ット"の 右クリックで、[プロパティ]を選択してクリックし	Mk48.exe - ショートカットのノロハティ	~
ます。タブ[ショートカット]ー[リンク先]にコマンドライン	全般 ショートカット 互換性 セキュリティ 詳細 以前のパージョン	
オプションを指定できます。下記の"コマンドラインオプ		
ションの説明"を参考にして ください。右図の例(002	Mk48.exe - ショートカット	
0=16進数)では、保護状態でMagicProcessorK		-
を実行します。 何もコマンドラインオプションを指定し	種類: アプリケーション	
ない時は、以前の状態で実行されます。		
例:C:¥MK48¥MK48EXE 0020	リンク先(<u>T</u>): C:¥MK48¥Mk48.exe 0020	
2-3. コマンドラインオプションの説明	/佐幸フュルダー(の).	_
実行時のコマンドラインオプションを下記の形式で指定で	C:¥MK48	
きます。 PathXMK18 EXE Flag	ショートカット キー(<u>K</u>):	
Path¥	実行時の 走営さ(R):	\sim
MK48 EXEがあるフォルダのパス名を指定します。	באבעבובא (ס):	
例:C:¥MK48¥		_
MK48 EXE	ファイルの場所を開く(E) アイコンの変更(<u>C</u>) 詳細設定(<u>D</u>)	
このアプリケーションの実行ファイル名です。		
Flag		
1バイトの値を16進数で指定します。ビット単位で		
下記の設定ができます。		
Bit0		
Bit1		
Bit2	OK キャンセル 適用(<u>/</u>	A)
Bit3		
Bit4		
Bit5 初期化ファイルの書き込み禁止。保護状態で	で実行します。	
Bit6		
Bit7		
Bit8		
Bit9		
Bit10		
Bit11		
Bit12		

Bit14 Bit15 メンテナンスモードで起動します。

Bit13

3-1. 本体の測定起動方法 - [関連項目 収録データを素早く確認 収録データのコピーと確認 水圧起動]

パワーオンで、本体の測定を起動します。測定条件は、SDカードの測定条件設定ファイル(index62.txt)を、Windowsの" メモ帳"で編集し、SDカードの測定条件設定ファイルを上書きすることで設定します。

- 1. 本体をパワーオフしてから、SDカードを取り外します。パソコンのSDカードアダプターにSDカードを装着します。
- SD カードのドライブ(下例ではJドライブ)を、"Windows エクスプローラ"で見ると、下図の4個のファイルを表示します。(下 例では装置の機械番号下3桁:002)

SDHC (J:)	× +		- 0 X
$\leftarrow \rightarrow \uparrow$	C □ > SDH	C (J:) SDH	C (J:)の検索
⊕ 新規作成 ~	X () (î) (4)) 🖻 …	□ プレビュー
名前	更新日時	種類	サイズ
INDEX62.TXT	2022/01/01 0:00	テキスト ドキュメント	1 KB
WH002M.H10	2022/01/01 0:00	H10 ファイル	524,032 KB
WH002R.H10	2022/01/01 0:00	H10 ファイル	32,768 KB
WH002R.TXT	2024/03/19 14:40	テキスト ドキュメント	2 KB

3. 測定条件設定ファイル(index62.txt)を、Windowsの"メモ帳"で開き、測定条件を編集します。標準の測定条件設定ファイルの内容は、下記のようになっています。

02:Start measurement of WAVE HUNTER(y/n); y

11:Measurement time; 20(min.)

12:Measurement interval; 20(min.)

13:Sampling interval; 0.50(sec.)

15:Power-on date/time; 22/1/1, 0:0

16:Measurement start time; 0:0

21:Height of water pressure gauge from sea bottom; 0.50(m)

22:Range of principal wave direction; 0 \sim 359(deg.)

26:Angular deviation between due north and magnetic north; 0(deg.)

- 4. 上記の日時の指定は、パワーオン日時を覚えておけば、観測終了後に、このソフトで更新できます。上記の設定では、パ ワーオン後、すぐに予備測定を開始します。測定条件を変更しない場合は、編集、上書きする必要はありません。
- 5. 測定条件設定ファイル(index62.txt)を編集した場合は、上書きしてください。SDカードを、パソコンのSDカードアダプタ ーから取り外し、本体に装着します。
- 6. 本体を、パワーオンして測定起動します。動作確認ランプが10秒間点灯して、消灯します。パワーオン時刻を書き留めま す。
- 7. 上記の設定の場合は、パワーオン後、予備測定を開始し、動作確認ランプ消灯後、1秒間隔で点滅します。1分後に測定 状態になり、動作確認ランプは、サンプル間隔で点滅します。下図のタイムチャートを参照してください

動作確認ランプ点灯間隔 待機状態:0.5秒/1分 予備状態測定:0.02秒/1秒 測定状態:0.02秒/サンプル間隔

- 注1:パワーオン後、SDカードの処理結果テキストファイル(wh002r. txt)の過去データは消去され、処理結果Rファイル(wh002r. h10)、マスターファイル(wh002m. h10)は新しいデータで上書きされます。パワーオンの前に、過去のデータファイルをバックアップしてください。
- 注2:パワーオン後、正常に測定起動できない場合は、動作確認ランプを0.3秒間隔で点滅して、異常(SDカードが装着され ていないなど)を知らせます。

設定値の説明

02:Start measurement of WAVE HUNTER(y/n); y 02:WAVE HUNTER の測定を開始します(y/n); y [y]では、パワーオンですぐに測定を起動します。[n]では、本体は、保管状態になります。 11:測定時間; 20(min.) 11:Measurement time; 20(min.) 測定時間(1~60分)を指定します。 12:Measurement interval; 20(min.) 12:測定間隔; 20(min.) 測定間隔(1~240分)を指定します。 13:サンプリング間隔: 0.5(sec.) 13:Sampling inteval; 0.5(sec.) サンプル間隔(1.0,0.5,0.2,0.1sec)を指定します。 15:Power-on date/time; 2022/1/1, 0:0:0 15:日付/時刻を設定します: 2022/1/1 0:0:0 パワーオン日時を設定します。(本体の時計はパワーオン で、この日時に設定されます) 16:Measurement start time; 0:0 16:測定開始時間;0:0 測定開始時刻を指定します。上記のパワーオン日時(2022/1/1 0:0)で、この値を0:9に設定した場合は、パワーオンの9分 後に、予備測定状態になります。測定データの日時は、観測終了後に、SDカードのファイルをコピーして、MagicProcessor K4.8で、後から測定日時を割り付けることができます。 21:Height of water pressure gauge from sea bottom; 0.50(m) 21:海底からの水圧計の高さ: 0.50(m) 水圧変動を水位変動に換算する式に必要です。水圧計は、本体内に取り付けられています。水圧計の海底からの高さ(xx.x m)を、できるだけ正確に指定します。 22:Range of principal wave direction; $0 \sim 359(deg.)$ 22:主波方向の範囲; 0~359(deg.) 沿岸での波向観測では、陸からの波はないと考え、装置を設置した、海岸線の海側の方位の範囲を指定し、主波向の計算に、 正しい指標を与えます。常に、磁北から、時計回りの角度で指定してください。また、磁北をまたぐ時も、330~40のように、 時計回りで、指定してください。 26:Angular deviation between due north and magnetic north; 0(deg.) 26:真北と磁北の間の角度偏差; 0(deg.) 真北と磁北の偏角を逆時計回りで指定します。東京では7°。ゼロを指定した時の処理結果は、磁北からの向きになります。 測定条件書換え例 例1. サンプル間隔0. 2sec、測定時間10分、測定間隔10分、水圧計の海底からの高さ1. 0m、パワーオン後、1分で予備 測定を開始する。 02:Start measurement of WAVE HUNTER(y/n); y 11:Measurement time: 10(min.) 12:Measurement interval; 10(min.) 13:Sampling interval: 0.20(sec.) 15:Power-on date/time: 22/1/1. 0:0 16:Measurement start time; 0:1 21:Height of water pressure gauge from sea bottom; 1.00(m) 22:Range of principal wave direction; $0 \sim 359(deg.)$ 26:Angular deviation between due north and magnetic north; 0(deg.) 例2. サンプル間隔0. 5sec、測定時間10分、測定間隔10分、水圧計の海底からの高さ3. 5mで測定起動する。2024/2/1 10:55 にパワーオンし、10:59 から、1 測定目の予備測定を開始する。 02:Start measurement of WAVE HUNTER(y/n); y 11:Measurement time: 10(min.) 12:Measurement interval; 10(min.) 13:Sampling interval; 0.50(sec.) 15:Power-on date/time; 24/2/1, 10:55 16:Measurement start time; 10:59 21:Height of water pressure gauge from sea bottom; 3.50(m) 22:Range of principal wave direction; $0 \sim 359(deg.)$ 26:Angular deviation between due north and magnetic north; 0(deg.)

3-2. 水圧起動による測定起動方法

本体(WH-600シリーズ)の SD カードのファイル(index62.txt)の02項を、下記のように[n]に編集して、パワーオンする と、本体は保管状態になります。本体とパソコンをケーブル接続し、オンラインで制御できます。また、本体は、水圧起動モー ドになり、オンラインで起動できない場合でも、本体の水圧センサーを利用して、測定起動することができます。本体をパワー オンし、耐圧タンクを密閉後、しばらく時間をおいてから、測定起動したい場合などに利用できます。

======= index62. txtの内容 ======

02:Start measurement of WAVE HUNTER(y/n); n

11:Measurement time; 20(min.)

- 12:Measurement interval; 20(min.)
- 13:Sampling interval; 0.50(sec.)
- 15:Power-on date/time; 22/1/1, 0:0 16:Measurement start time: 0:0
- 21:Height of water pressure gauge from sea bottom; 0.50(m)
- 22:Range of principal wave direction; $0 \sim 359(deg.)$
- 26:Angular deviation between due north and magnetic north; 0(deg.)

水圧起動手順

- 水圧センサーは、超音波センサーと同じ、本体上部の黒ゴムラバーのオイルタンクの中にあります。黒ゴムラバーを、掌で 押すと、水圧センサーに圧力がかかります。
- 2. 黒ゴムラバーを、少し強く押し続けると、動作確認ランプが点灯し、水圧起動オンを示します。
- 3. そのまま3秒以上押し続けると、動作確認ランプが、1秒間隔で点滅し、本体は測定起動されます。
- 4. 本体の時計は、2022/1/1 00:00にリセットされますので、測定起動した時刻を、書き留めてください。

注1:測定起動される前に、黒ゴムラバーから手を離すと、動作確認ランプは消灯して、本体は、元の保管状態に戻ります。 注2:水圧起動された場合、そのまま、大気中に放置すると、24時間後に自動的に、保管状態に戻ります。観測終了後も同

様に、海中から引き上げ、大気中に放置すると、24時間後に、測定停止して保管状態になります。

注3:パワーオン測定起動と同様に、本体は、リセットされ、測定番号1から開始されます。

3-3. 収録データを素早く確認

観測終了後に、SDカードのデータを、素早く確認するには、下記の手順で行います。

本体をパワーオフしてから、本体のSDカードを抜き取ります。SDカードをパソコンのSDカードアダプターに装着します。
 "Windows エクスプローラ"で、接続したSDカードのドライブ(下図ではJドライブ)を指定して、内容を表示させます。

SDHC (J:)	× +		- 0 ×
$\leftarrow \rightarrow \uparrow$	C □ > SDH	IC (J:) SDH	C (J:)の検索
⊕ 新規作成 ∨	X O 🗈 🦉) 🖻 …	□ プレビュー
~ 名前	更新日時	種類	サイズ
INDEX62.TXT	2022/01/01 0:00	テキスト ドキュメント	1 KB
🗋 WH002M.H10	2022/01/01 0:00	H10 ファイル	524,032 KB
🗋 WH002R.H10	2022/01/01 0:00	H10 ファイル	32,768 KB
WH002R.TXT	2024/03/22 11:30	テキスト ドキュメント	43 KB

3. 前図のように、処理結果テキストファイル(例:whOO2r. txt)を選択して、Windowsの"メモ帳"で開きます。 収録された処理結果の全てを確認できます。

4. 確認が終わったら、"メモ帳"を閉じます。

3-4. 収録データのコピーと確認

観測終了後に、SDカードの測定データを、パソコンで確認するには、下記の手順で行います。測定した生データはマスターフ ァイルに、本体でデータ処理された結果は、処理結果Rファイルと処理結果テキストファイルに収録されています。

準備

MagicProcesserKを実行します。ファイルが開いていれば、メニュー[ファイルー閉じる]で終了し、メニュー[ファイルー初期 化]で、適切な初期化番号(WH-600シリーズ場合は00番)を選び、、MagicProcesserKを初期化します。

カレントフォルダに、同じ機械番号のファイルがある場合は、ファイルを、別のフォルダに移動します。機械番号が002の場合は、下記のような"wh002"に関する全てのファイルを、削除、又は移動します。

wh002m. h10 wh002l. h10 wh002r. h10 wh002i. h10 wh002r. txt

測定データの確認

1. 本体をパワーオフしてから、本体のSDカードを抜き取ります。SDカードをパソコンのSDカードアダプターに装着します。

2. "Windows エクスプローラ"で、接続したSDカードのドライブ(下図ではJドライブ)を指定して、ドライブの内容を表示させま

す。

SDHC (J:)	× +		- 🗆 X
$\leftarrow \rightarrow \uparrow$	C 및 > SDł	HC (J:) SDH	C (J:)の検索
④ 新規作成 ∨	<mark>Х С</mark> 🗋 0	A) 🖻 …	□ プレビュー
名前	更新日時	種類	サイズ
INDEX62.TXT	2022/01/01 0:00	テキスト ドキュメント	1 KB
🗋 WH002M.H10	2022/01/01 0:00	H10 ファイル	524,032 KB
		1110 7 (1)	22 7 62 1/2
🗋 WH002R.H10	2022/01/01 0:00	H10 ノアイル	32,768 KB

- 3. 上図のように、マスターファイル(例:wh0002m. h10)、処理結果Rファイル(例:wh002r. h10)、処理結果テキストフ ァイル(例:wh002r. txt)を選択して、MagicProcesserK のインストールされているカレントフォルダにコピーします。
- 4. MagicProcesserKを実行して、メニュー[ファイルー開く] → で、処理結果 R ファイルを(例:wh002r. h10)を、開きま す。 トをクリックして[処理結果表] のウインドウを表示します。処理結果ファイル(whxxxl. h10)が作成されますの でタイトルバーで確認します。
- ステータスバーの、最終収録測定番号を参考にして、処理する測定回数分を、ツールバーのリストボックス
 設定します。 ▶のクリックで、連続処理を開始して、処理結果表を完成させます。メニュー〔処理-中止〕 ■のクリックで中止できます。
- メニュー[表示 処理結果のグラフ] で、処理結果グラフを表示できます。表やグラフのフォーマットは、メニュー[処理 ー条件の設定] ▲ – タブ[表]、[グラフ]で編集できます。測定番号を進めて表示するには ▶、戻るには ◆ をクリックしま す。
- 注1. マスターファイルを処理して、取得データを確認する場合は、5-1. 処理の設定と実行を参照してください。
- 注2. SDカードをフォーマットする場合は、パソコンのWindowsで、フォーマットを実行してください。フォーマット後、本体に装着して、本体をパワーオンします。動作確認ランプが点灯して既定のファイルを作成します。その後、測定起動された場合は、パワーオフしてください。

4-1. 生データグラフ - [関連項目 生データ表 生データグラフの編集]

- 1. マスターファイル(WHxxxM. H10)を、メニュー[ファイルー開く] 챧で開きます。
- 2. アプリケーションの終了状態によって、グラフを表示しない場合があります。メニュー[表示-生データのグラフ] ジェクリックしてデータを表示させます。グラフのフォーマットは、メニュー[処理-条件の設定] ジュータブ[グラフ]で編集できます。
 3. 測定番号を進めて表示するには ▶、戻るには ◆ をクリックします。連続して表示するには、1 に表示する測定

回数をセットして ▶、またはく をクリックします。連続表示を中止するときは、 ■をクリックします。

- 注1. 大きく測定番号を移動するときは、メインウィンドウ下の[スクロールバー]を使用します。
- 注2. グラフの拡大や縮小は、右クリックメニューやファンクションキー[縮小-F3]、[拡大-F4]を使うと便利です。
- 注3. データの値が、一定だと、グラフは直線になり、何も描いていないように見えますので、注意して下さい。
- 注4.1測定分の中での表示の移動は、垂直スクロールバーでできます。

4-2. 生データグラフの編集

- 1. メニュー[処理-条件の設定] 🎽 -タブ[グラフ-生データグラフの設定]で、編集します。
- 2. 表示や印刷したい生データを、[1]~[8]の 2表示をオンにして、選びます。
- 3. グラフが見やすいように、各チャンネルの[Y軸スケール]を決めます。データの値が、明確でない時は、[自動]をオンにして下さい。スケールを同じにして、波形を比較したい時は、[連動]もオンにして下さい。
- 4. [X軸スケール:測定時間(分)]を決めます。[更新]をクリックして、再表示して下さい。
- 注1. [長周期]のオンで、長周期フィルター後の生波形を表示します。
- 注2. [1]~[5]の番号のクリックで、各チャンネルの線色を指定できます。メニュー[編集-背景色]、[編集-フォント]も利用できます。

4-3. 生データ表 - [関連項目 生データグラフ]

- 1. マスターファイル(WHxxxM. H10 xxx:機械番号下3桁)を、メニュ ー[ファイル−開く] ²⁰で開きます。
- メニュー[表示-生データ表] Ø のクリックで、右図の生データ表を表示できます。
- 3. 測定番号を進めて表示するには ▶、戻るには ◆、戻るには ◆ をクリックします。
 連続して表示するには、
 1 に表示する測定回数をセットして ▶、
 または ◆ をクリックします。連続表示を中止するときは、
 ●をクリックします。
- 注1. 大きく測定番号を移動するときは、メインウィンドウ下の[スクロール バー]を使用します。
- 注2. フォント、背景色は、メニュー[編集-フォント]と[編集-背景色]で変 更ができます。

グラフマークの値を示しています。グラ / フのプロット点上を、クリックすると、連 動して移動します。

`````````````````````````````````````	夕表		- 0	×
水圧	日流速	N流速	水位	
ഭ∕ ഗീ	cm /5	cm /5	cm	
2342,	6,	-18,	2244	^
2337,	7,	-18,	2231	
2333,	7,	-16,	2224	
2330,	7,	-13,	2219	
2334,	6,	-6,	2214	
2339,	3,	0,	2225	
2346,	1,	4,	2240	
2355,	0,	9,	2252	1
2364,	2,	12,	2271	
2373,	2,	15,	2299	
2380,	з,	17,	2314	
2385,	4,	15,	2322	/
2388,	7,	10,	2318	/
2388,	8,	5,	2318 /	¥
<				>
			/	

表をスクロールします。ただ表をスクロールさせるだ / けです。リストマークやカーソールは移動しません。

#### 4-4. 生データの修正

生データの修正は、データファイルを、直接、書替えます。元にもどすことはできません。必ず、事前に、オリジナルファイルの コピーを作ってから、修正作業をして下さい。または、最初に[上書き保存]する替わりに、メニュー[ファイルー名前を付けて 保存]で保存すれば、別のファイル名で、修正作業ができます。

#### エラー値で埋める

水圧、EN流速の3チャンネルの場合、生データ表の1サンプルデータ目を、下のように、エラー値(-32768)にします。この1行をコピーして、すぐ下の行から、9回、貼り付けて、10行のエラー行を作ります。次に10行をコピーして、その下に11回貼り付けます。同様に120行をコピーして、次の行から、測定時間(分)-1回、貼り付けます。これで測定値がすべてエラー値で埋められます。

-32768, -32768, -32768

 メニュー[ファイルー上書き保存]します。余分なデータは切り捨てられ、エラー値で埋められた、1測定分のデータを再表示します。メニュー[編集-すべてを選択]を使って、ヘッダーを含め、すべてをコピーします。Windowsのアプリケーション、 "メモ帳"を実行して、貼り付けます。"メモ帳"でヘッダーの3行を削除して、適当な名前を付けて保存します。その後は、フ ァイルから、1測定分のエラーデータをコピーして使用できます。"メモ帳"の[すべてを選択]も利用します。

3. 必要なだけ、1測定分づつ、エラー値を貼り付けては、メニュー[ファイルー上書き保存]します。

#### スパイクノイズを削除する

1. 生データグラフの、異常値のプロット点を、クリックします。グラフマーク▼が移動すると共に、生データ表のリストマーク■

が、その値を指します。生データ表の異常値にカーソルを移動して、値を修正します。何ヵ所か修正点があれば、同様に値 をキーインして修正します。値は同じフォーマットにして下さい。古い値は消して、表のフォーマット全体が、元どおり、ずれて いないよう、整えます。

2. メニュー[ファイルー上書き保存]でファイルを修正します。生データグラフは、修正値で再表示されます。右クリックメニュ

ー[上書き保存]でも同じです。生データグラフは、 ▶、 ◀ で再読み込みして、表示を更新してください

# 他のデータをコピーして貼り付ける

- 1. コピー元のデータを表示し、メニュー[編集-すべてを選択]を使って、生データ表をコピーします。コピー先のデータを、表示します。先頭に、カーソルをあわせて、貼り付けます。
- 2. メニュー[ファイルー上書き保存]で、ファイルを書替えます。

# 処理後の生データファイルについて

生データ表のウィンドウを表示していると、 ・ で処理をした後の生データの数値表を表示します。この数値表を利用したい場合は、カレントフォルダのファイル(WH22G. TXT)を参照してください。メニュー[条件の設定]ータブ[グラフー生データグラフの設定]で、[長周期]がチェックされていると、長周期フィルター通過後の数値が得られます

#### 4-5. 成分流速2次元グラフ

生データのチャンネル2をX(E)座標、チャンネル3をY(N)座標として、右図のように表示します。スケールは、生データグラフのスケールに準じます。プロット数は、生データグラフと同じデータ数です。流れの軌跡をイメージとしてつかめます。

- マスターファイル(WHxxxM. H10 xxx:機械番号下3桁)を、メ
   ニュー[ファイルー開く] ごで開きます。
- メニュー[表示 成分流速2次元グラフ] →をクリックしてデータ を表示させてください。
- 測定番号を進めて表示するには ▶、戻るには↓ をクリックします。連続して表示するには、 1 に表示する測定回数をセットして ▶、または↓ をクリックします。連続表示を中止するときは、 ■をクリックします。



注1. 大きく測定番号を移動するときは、メインウィンドウ下の[スクロールバー]を使用します。

# 4-6. 処理結果グラフ - [関連項目 処理結果表 処理結果グラフの編集]

- メインウィンドウのタイトルバーで、処理結果Rファ イル名を確認します。ファイル名が表示されていな い時は、処理結果Rファイル(WHxxxR. H10)を開 いて、処理結果ファイル(WHxxxL. H10)を作りま す。以前に開いていた場合は、自動的に表示されま す。
- メニュー[表示 処理結果のグラフ] ごで、処理結 果グラフを表示できます。グラフのフォーマットは、メ ニュー[処理 – 条件の設定] ニータブ[グラフ]で編 集できます。

プロット点を、クリックすると、移動します。処理結果表のリストマークと連動しています。



- 🖣 をクリックします。
- 注1. 大きく測定番号を移動するときは、メインウィンドウ下の[スクロールバー]を使用します。
- 注2. グラフの拡大や縮小は、右クリックメニューやファンクションキー[縮小-F3]、[拡大-F4]を使うと便利です。

# 4-7. 処理結果グラフの編集

- 1.メニュー[処理-条件の設定] -タブ[グラフー処理結果グラフの設定]で、編集します。
- 2. 表示や印刷したい処理結果項目を、[1]~[8]、[D1]、[D2]のダウンリスト 1 有義波高p(m) ♥の中で、選びます。65

番目のスペースを選ぶと、そのチャンネルは、描きません。[1]チャンネルは、スペース にできません。

- 3. 各チャンネルのY軸スケールを決めます。グラフが見やすくなるように、[下限値]と[上限値]を決めます。結果の値が、明 確でない時は、[自動]をオンにして下さい。
- 4. [X軸スケール(日)]と[X目盛数]を決めます。[マーク]と[数値]のオン/オフを決めます。
- 5. [更新]をクリックして、再表示して下さい。
- 注1. [1]~[8]、[D1]、[D2]]のクリックで、各チャンネルの線色を指定できます。メニュー[編集-背景色]、[編集-フォント]も利用できます。
- 注2. グラフの線の太さ、マークの大きさ、スケールフォーマットなどは、初期化ファイルで変更できます。

グラフのY軸スケールの上/下 限値を指定します。ダウンリス トの中から、クリックして選びま す。値のキーインもできます。Y 軸目盛の本数は5本です。上 /下限値に同じ値を設定しな いで下さい。	MagitProcessorK - 条件の設定     表 グラフ     処理結果グラフの設定     1 有義波高(m) ✓ 0      E限値 1 ✓ 上限値 ✓自動	Y軸スケールを、測定値から計 算して、自動的に決めます。オ ンの時は、「下限値」、「上限 値」を設定しても、無視されま す。 プロット点の、回りを囲む、[↔] [⊕]のマークを描きます。
グラフの線の色を指定します。 1~4、Dをクリックしてダイヤロ グボックスを表示し、希望の色 を選んで下さい。[更新]でグラ	$2 \sqrt{10} \sqrt{10}$ $2 \sqrt{20} \sqrt{10}$ $2 \sqrt{20} \sqrt{10}$ $3 \ \text{\text{id}}(m/s)$ $0 \sqrt{15} \sqrt{15}$ $1 \sqrt{25} \sqrt{10}$ $4 \ \text{x\text{id}}(C)$ $15 \sqrt{15} \sqrt{25} \sqrt{10}$ $10 \sqrt{10} \sqrt{10}$	プロット点のすぐ側に、その点 の値を表示します。
フを再描画します。 グラフに表示する各チャンネル の処理結果項目を、ダウンリス トの中から選択します。	6     0     10       7     0     10       8     0     10       01<平均波向(*)	グラフの左端から、右端までの 測定日数を決めます。ダウンリ ストの中から選ぶか、値をキー インします。ダウンリストの小数 点の付いた値は、スケールを 時間で、指定する時に使用しま す「X軸スケール」の値を変更
処理結果が方向を示すデータ (平均波向、主波向、流向、風 向)を選びます。16方位表現 の項目は、選べません。度数 表示の項目を選んでください。	生データグラフの設定 1 001 水圧 kf cd ) ◇ ▽表示 100 ◇ Y軸スケール ◇ 運動 2 002 E流速 (cm/s) ◇ ▽表示 100 ◇	すると、[X目盛数]も適当と思われる値に、変更されます。
グラフに描く、X軸目盛の本数 を指定します。ダウンリストの 中から選ぶか、値をキーインし ます。[X軸スケール]の値を変 更すると、[X目盛数]も適当と 思われる値に、変更されます。	4 004 水位 (cm) ✓ 図表示 100 ✓ 5 ✓ □表示 100 ✓ 6 ✓ □表示 100 ✓ 7 ✓ □表示 100 ✓ 8 ✓ □表示 100 ✓ 100 ✓ 8 ✓ □表示 100 ✓ 100 ✓ 100 ✓ 100 ✓	
	更新(N) OK	

# 4-8. 処理結果表 - [関連項目 処理結果グラフ 処理結果表の編集]

- 1. メインウィンドウのタイトルバーで、処理結果Rファイ ル名を確認します。ファイル名が表示されていない 時は、処理結果Rファイル(WHxxxR, H10)を開い て、処理結果ファイル(WHxxxL. H10)を作ります。 以前に開いていた場合は、自動的に表示されます。
- 2.メニュー[表示-処理結果表] で、処理結果表 を表示できます。表のフォーマットは、メニュー[処理

-条件の設定] 🍑 -タブ[表]で編集できます。

- 3. 測定番号を進めて表示するには ▶、戻るには
  - をクリックします。
- 注1. 大きく測定番号を移動するときは、メインウィンド ウ下の[スクロールバー]を使用します。

🔒 処理結果表					
月日時分	最高波p H(m) T(s)	有義波p 平均 H(m) T(s)波向	水位P (m)	流速流向 水温 (m/s)   (°C)	測定 番号
7/26 08:50	5.10 14.1	3.03 14.3 SSE	23.62	0.16 SE 20.5	795 🔨
7/26 09:50 7/26 10:50	5.23 11.7 4.20 15.4	3.11 13.6 SSE 3.16 13.3 SSE	23.66 23.62	0.14 SSW 24.5 0.17 SSW 24.5	796 797 /
7/26 11:50	4.38 12.9	3.42 13.4 SSE	23.47	0.15 SW 24.9	798
7/26 12:50 7/26 13:50	4.85 13.0 5.07 12.1	3.26 13.7 SSE 3.18 12.8 SSE	23.27 23.10	0.11 SW 24.9 0.12 SSW 25.1	799
7/26 14:50	4.39 14.4 4 52 12 7	3.18 12.9 SSE 3 17 12 0 SSE	22.98 22.97	0.08 SSW 25.2	801
7/26 16:50	4.67 9.6	2.87 11.8 SSE	23.02	0.09 NNE 23.7	803
7/26 17:50	4.28 13.3 4.66 13.3	3.03 12.2 SSE 3.21 12.2 SSE スクロールル まオ	23.16	0.20 N 22.3	804
7/26 19:50 7/26 20:50	4.22 孫之 4.00 代わー	~2.817246-35EP -2.384は移動し	。28.585 またれ。	*0.18 NNE 22.7 0.18 NNE 22.7	806 807
7/90 91•60 <	4 00 14 9	0 00 10 0 000	00 ON	N 10 NINE 99 Q	ono *

注2. フォント、背景色は、メニュー「編集-フォント」と「編集-背景色」で変更ができます。

# 4-9. 処理結果表の編集

- 1.メニュー[処理-条件の設定] 🍑 -タブ[表]で、編集します。
- 2. 右図の左のリストで追加位置(選択項目の上に追加され ます。)を、クリックして決めます。表示したい処理結果項目 を、右のリストの中で選びます。[追加]をクリックして項目 を追加します。
- 3. 左のリストの一番上が印刷用紙や、画面の、左端の項目 です。[空白]は2つ分のスペースを確保します。表を見や すくするために、所々にスペースを入れて下さい。[AA]時 を基準に[BB]時間毎に空白行を挿入も利用して、空白行 も適当に加えて下さい。
- 4. [削除]、[置換]、[クリア]のボタンも利用すると便利で す。
- 5. [更新]、または「OK]をクリックして、再表示して下さい。

果項目を、選びます。

表示します。

右のリストの中から、表示や印刷したい処理結

ここをオフにして、[更新]すると、水圧データか

ら計算した、処理結果(有義波高、水位など)を

📓 MagicProcessorK - 条件の設定 表|グラフ| 処理結果表のフォーマット 000 測定時間/間隔 001 年 002 月日 003 時分 004 フィルや波高1(m) 005 フィルや波高2(m) 006 測定電号 105 S有義波高p(m) 008 最高波電駅(m) 008 最高波電駅(m) 009 最高波電駅(m) 011 1/10最大波高斯(m) 011 1/10最大波高期(m)、 002 月日 003 時分 追加 ٨ 064 004 008 最高波高p(m) 009 最高波周期p(s) 置換 064 削除 012 有義波高瓦(m) 013 有義波周期p(s) 025 平均波向16 064 空白 021 水立p(m) U64 032 流速(m∕s) 034 流向16 035 水温(℃) 064 011 1/10 泉 (太波) 周期 p( 012 有 武波高向(m) 013 有 武波高前向(s) 014 平均波高向(m) 015 平均波高向(m) 016 標準編差 p 017 空み度 p 018 尖锐皮 p 019 波数 p 016 8ビーク周期 (s) 021 水位 (m) 017 S有 表波高(m) 025 平均波向(°) 025 平均波(m) 030 方向集中係数 031 流高(°) 033 流向(°) 035 水温(°C) カリア 0,06 測定番号

0

時を基準に、12

処理結果項目

×

Z

## 更新(N) ΟK 表を見やすくするために、指定する間隔で、 表に空白行を入れます。基準時刻の指定 で、空白行の時刻を合せます。

時間毎に空白行を挿入

グラフマークの処理結果値を示してい ます。グラフと連動しています。

# 4-10. 処理結果の修正

下記の要領で処理結果を修正できます。

## 不要な結果をエラー値で埋める

- 1. 処理結果表を表示し、修正したい行に、カーソルを移動します(左クリックする)。メニュー[ファイルー行のエラー値上書き 保存]で修正します。表示の値は、"―――"になり、処理結果グラフから、その点が消えます。右クリックメニュー[行のエラ ー値上書き保存]でも同じです。ファンクションキーF2を利用すると便利です。
- 2. エラー値で上書きした行を、元にもどしたい場合は、その行にカーソルを移動して、右クリックメニュー[再処理]でもどりま す。

# 処理結果グラフの異常値を修正する

- 処理結果グラフの、異常値のプロット点を、クリックします。グラフマーク▼が移動すると共に、処理結果表のリストマーク
   が、その処理結果を指します。処理結果表の異常値にカーソルを移動して、値を修正します。何ヵ所か修正点があれば、
   同様に値をキーインして修正します。値は同じフォーマットにして下さい。古い値を消して、表のフォーマット全体が、元どうり、
   ずれていないよう、整えます。メニュー[ファイルー上書き保存]で修正します。処理結果グラフは、修正値で再表示されます。
   右クリックメニュー[上書き保存]でも同じです。
- 2. 修正値を、元にもどしたい場合は、その行にカーソルを移動して、右クリックメニュー[再処理]でもどります。

#### 処理結果表のファイルについて

処理結果表を利用したい場合は、カレントフォルダのファイル(WH23G. TXT)を参照してください。

# 4-11. パワースペクトル

- 1. マスターファイル(WHxxxM. H10)を、メニュー[ファイルー開く] 🌽 で開きます。 以前、開いていた場合は、自動的に表 示されます。
- 2. メニュー[表示ーパワースペクトル] [▲]で、パワースペクトルを表示できます。メニュー[処理ー条件の設定] [▲] ータブ [処理条件]の[スペクトルのデータ数]、[スペクトルフィルターの回数]を適当に選んで、グラフを見やすくしてください。
- 3. 測定番号を進めて表示するには ▶、戻るには ◆ をクリックします。連続して表示するには、¹ × に表示する測定
   回数をセットして ▶、または ◆ をクリックします。連続表示を中止するときは、 ■をクリックします。



注1. 大きく測定番号を移動するときは、メインウィンドウ下の[スクロールバー]を使用します。

注2. 前ページの図は、水圧のパワースペクトルです。水圧はメニュー[処理-表示の実行] ▶で表示した時は、水圧のままのスペクトルです。メニュー[処理-処理の実行] ▶で処理をして表示した場合は、理論補正された水位のスペクトルとして表示します。

#### スペクトル表示ファイル

パワースペクトルのグラフ表示に使用した数値データを利用したい場合は、カレントフォルダのファイル(WH24G. TXT)を 参照してください。ファイルの内容は、下のようになります。

1 1. 95503E-03, 4. 20440E-02 3. 91007E-03, 4. 65924E-02 5. 86510E-03, 5. 98910E-02 7. 82014E-03, 8. 08260E-02 9. 77517E-03, 1. 07323E-01 1. 17302E-02, 1. 36145E-01 1. 36852E-02, 1. 62908E-01 1. 56403E-02, 1. 82635E-01 1. 75953E-02, 1. 91016E-01

.

.

•

.

.

.

チャンネル 周波数,スペクトル密度

# 4-12. 処理結果項目

機種や、処理条件によって、処理結果項目(64項目)は異なります。メニュー[処理-条件の設定] → ータブ[表]で確認して ください。下表は初期化ファイル(番号:00=波浪(WH-608、WH-503、HJ-503など)、ファイル名:MK48i-00. or g)よって初期化された時の処理結果項目(0~64項目)表です。

00:測定時間/間隔	01:年	02:月/日	03:時:分
04:フィルタ波高1(m)	05:フィルタ波高2(m)	06:測定番号	07:S有義波高p(m)
08:最高波高(水圧、m)	09:最高波周期(sec.)	10:1/10最大波高(m)	11:1/10最大波周期(sec.)
12:有義波高(水圧、m)	13:有義波周期(sec.)	14:平均波高(水圧、m)	15:平均波周期(sec.)
16:標準偏差( <i>η</i> rms)	17:歪み度(Skewness)	18:尖鋭度(Kurtosis)	19:波数
20:Sピーク周期p(sec.)	21:水深(水圧、m)	22:S有義波高(m)	23:Sピーク周期(sec.)
24:平均波向(°)	25:同左(16方位表現)	26:主波向(°)	27:同左(16方位表現)
28:フィルタ波高3(m)	29:平均分散角(°)	30:方向集中係数(γ ['] )	31:波峯長パラメーター(γ)
32∶平均流速(m/sec)	33:平均流向(°)	34:同左(16方位表現)	35∶水温(℃)
36:長周期最高波高(m)	37:長周期最高波周期(s)	38:長周期有義波高(m)	39:長周期有義波周期(s)
40:Sピーク波向(゜)	41:Sピーク波向(16 方位表現)	42:S主波向(°)	43:S主波向(16 方位表現)
44:S平均波向(゜)	45:S平均波向(16 方位表現)	46:Sピーク周期(s)	47:Sピークエネルギー
48:最高波高(m)	49:最高波周期(sec.)	50:1/10最大波高(m)	51:1/10最大波周期(sec.)
52:有義波高(m)	53:有義波周期(sec.)	54:平均波高(m)	55:平均波周期(sec.)
56:標準偏差( <i>η</i> rms)	57:歪み度(Skewness)	58:尖鋭度(Kurtosis)	59:波数
60:フィルタ波高4(m)	61:水深(m)	62:フィルタ波高5(m)	63:フィルタ波高6(m)
64:(空白)			

S:スペクトル

# 5-1. 印刷

# A. まず表示します。

1. マスターファイル(WHxxxM. H10)を、メニュー[ファイルー開く] 🌽で開きます。

2. 印刷する表やグラフを、 🗑 、 😂 、 🔜 、 🔤 、 🏞 、 のクリックで選択します。 メニュー [処理 – 条件の設定] 🗳 – タブ [表] 、 ータブ [グラフ] で編集して、 見やすいフォーマットにしてください。

#### B. そして印刷します。

3. メニュー[ファイルー印刷]で、[印刷の範囲]、[印刷部数]、[プリンタ]を決めて、[OK]をクリックして印刷します。印刷 量が多い場合や、グラフが複雑な時は、時間がかかります。全て印刷する時は、[印刷の範囲]で[すべて]を選びます。

4. 表もグラフも同じように印刷できます。下記の点に注意してください。

#### 処理結果表では

注1. 用紙の先頭にくる、測定日時の行にカーソルを合せ、メニュー[ファイルー印刷]で、テスト印刷をして確認して下さい。印 刷文字が、用紙からはみ出る場合は、フォントサイズや、[1ページ当たりの測定回数]などで、調整して下さい。

注2. 表を部分的に印刷する時は、印刷したい範囲を、マウスでドラッグして、反転表示して選択します。

注3.1ページだけ、印刷する時は、用紙の先頭にしたい、測定日時の行にカーソルを合せます。

#### 処理結果グラフでは

注1. グラフを選択した場合は、全体が印刷されます。

注2. バランスが、悪い時は、フォントの大きさを調整して下さい。グラフが複雑な時は、時間がかかります。線の太さや、マークの大きさは、初期化ファイルで調整できます。

## 生データ表では

注1. 印刷したい範囲を、マウスでドラッグして、反転表示して選択します。カーソルを合せただけでは、何も印刷しません。生 データを1測定分、すべて印刷するとページ数が、多量になります。注意して下さい。

## 生データグラフでは

注1. データの値が、一定だと、グラフは直線になり、何も描いていないように見えますので、注意して下さい。

# 5-2. プリンターの設定

	🖶 印刷	×
Windowsの標準プリンターを示し ています。[詳細設定]の[用紙]	全般	
は、[靴」で送扒して下さい。		
	Adobe PDF Canon MG6100 Canon MG6100 Fax Microse series Printer XPS IY	
	< >	
	状態: 準備完了 詳細設定( <u>R</u> )	
	場所:	
表の印刷の時に有効です。フォーカ スされているウィンドウの表が、オート	コメント: フリンターの検索(ロ)	
べて印刷されます。生データのウィンドウでは、注意して下さい。	- ページ範囲	
	○ すべて(L) 部数(C): 1 ●	
	<ul> <li>         · 選択した部分(I)         · 現在のページ(U)     </li> </ul>	
表の選択した部分だけを印刷しま す。処理結果表の場合、何も選択 されていない時は、カーソール行 から、1ページ分を印刷します。	○ ページ指定( <u>G</u> ):	
	ED刷( <u>P)</u> キャンセノ	ŀ

6-1. メニュー[ファイル] - [関連項目 編集 表示 処理 ウィンドウ ヘルプ ポップアップメニュー]

# ファイル 開く(O) 챧 Ctrl+O

標準ファイル名の場合、マスターファイルを指定すれば、処理結果ファイルも自動的に開きます。任意の名前のファイルも 開けます。拡張子の前の1文字が、"L"だと、 処理結果ファイルとみなされます。ウィンドウのタイトルバーに、使用中のフ ァイル名を示します。処理結果 R ファイル(WHxxxR. H10)を開くこともできます。

注1. MagicProcessorKの前回の終了状態によって、表やグラフを表示しない場合があります。 პ や 阃 をクリックしてデ

ータを表示させてください。

ファイル 閉じる(C)

MagicProcessorKの状態を保存して、全てのファイルを閉じ、表示をクリアします。

# ファイル ファイルの更新(N) □ F5

開いているマスターファイルの更新して、最新の測定番号などを使用できるようにします。

## ファイル 初期化(I) F9

カレントフォルダに、いくつかのオリジナル初期化ファイル" MK48i-nn. org"があります。この初期化ファイルに、ア プリケーションを初期化するための設定値が保存されてい ます。

- 1. 右図の問い合わせがあります。
- クリックで、ダウンリストを表示させ、その中から対象の 番号を選んで[OK]をクリックします。



- 3. オリジナルの初期化ファイルが、カレントの初期化ファイル"MK48i. ini"にコピーされて、アプリケーションが再実行されます。
- 注:完全にアプリケーションを初期化する場合は、メニュー[ファイルー閉じる]でファイルを閉じてから、メニュー[ファイルー アプリケーションの初期化]を実行します。

# ファイル 上書き保存(S) 🖬 右クリックメニュー Ctrl+S

修正した生データ表の値で、マスターファイルを上書きします。生データの修正単位は、1測定分です。次の測定データを 表示する前に、保存して下さい。修正が処理結果表の時は、処理結果ファイルを、表の値で、上書きします。処理結果ファ イルの修正単位は、ファイル単位です。いつ保存してもかまいませんが、修正したら細めに保存するように、心がけて下さ い。

#### ファイル 行のエラー値上書き保存(E) 右クリックメニュー F2

処理結果ファイルの不要な部分(陸上のデータなど、表やグラフを見難くするデータを、1測定分、エラー値で上書きします。 この機能を利用して、表やグラフが、見やすくなるように整理します。

注意:このパッケージには、処理機能がないため、一度、エラー値で上書きすると、元に戻すことができません。元に戻すに は、アプリケーションを終了して、処理結果ファイル(WHxxxL. H10)を削除し、処理結果テキストファイル(WHxxxR. H1 0)を開いて、再度、処理結果ファイルを作り直します。

#### ファイル 名前を付けて保存(A)

修正した数値表を、別のファイルネームで、保存します。生データの修正単位は、1測定分です。[上書き保存]を、1度、実 行すると、マスターファイルの内容は書き換わってしまいます。オリジナルファイルを修正する前に、この[名前を付けて保 存]でオリジナルファイルのコピー(内容が同じで、別名のファイル)を作成してから、修正する方法を、おすすめします。処 理結果ファイルの場合は、マスターファイルさえあれば、何度でも、再計算して、修正することができます。

ファイル バックアップ(B)

カレントフォルダに"WHxxx"フォルダ、その下に"Byyyyーmmddーhhmmss"フォルダを作成して、"WHxxxー. H10" 関連データファイルを全てコピーします。

#### ファイル ファイルムーブ(V)

カレントフォルダに"WHxxx"フォルダ、その下に"Byyyyーmmddーhhmmss"フォルダを作成して、"WHxxxー. H10" 関連データファイルを移動します。

# ファイル <u>印刷(P)</u>

フォーカスされているウィンドウの、表やグラフを印刷します。

ファイル <u>測定時間一測定間隔の編集(G)</u>

測定データが、連続測定データの場合、測定開始日時、測定終了日時、測定時間、測定間隔を指定して、希望のマスター ファイルを作成できます。

#### ファイル 測定日時の更新(D)

測定データの測定開始日時を、指定した測定開始日時に変更します。

ファイル テキストデータファイルに変換(F)

マスターファイルを、テキストデータファイルへ変換します。

# MagicProcessorの終了(X)

このアプリケーションを終了します。

# 6-2. メニュー[編集]

## 編集 拡大(Z) 右クリックメニュー F4

X軸: グラフマーク▼を基準にして、X軸を拡大して再描画します。

Y軸: グラフのY軸方向を拡大して、再描画します。目盛の値は小さくなります。

#### 編集 縮小(U) 右クリックメニュー F3

X軸: グラフマーク▼を基準にして、X軸を縮小して再描画します。

Y軸: グラフのY軸方向を縮小して、再描画します。目盛の値は、大きくなります。

#### 編集 切り取り(T) Ctrl+X

選択部分を、Windowsのクリップボードに切り取ります。生データ表の修正時に利用します。グラフでは利用できません。 編集 コピー(C) 右クリックメニュー Ctrl+C

グラフのウィンドウを選択している時は、ウィンドウ全体を、Windowsのクリップボードにコピーします。表の場合は、選択 部分を、クリップボードにコピーします。メニュー[編集-すべてを選択]で、表全体を選択できます(見出しの部分は除きま す)。修正時に利用します。WordやExcellに、表やグラフを貼り付ける時も、利用します。

#### 編集 貼り付け(P) Ctrl+V

クリップボードの内容を、表に貼り付けます。修正時に利用します。グラフに貼り付けることはできません。

## 編集 フォント(F)

表やグラフのフォントを指定します。表のフォントは、下の制限があります。グラフのフォントは、指定どうりに表示します。

- 注 1.「MSP ゴシック」など、Pの付くタイプのプロポーショナルフォントは使用しないでください。
- 注 2. プロポーショナルフォントでなくても、ツルータイプフォント(「MS 明朝」など)では、文字の大きさによって、表の並び がずれることがあります。
- 注 3. 表の数値の部分は、フォント(文字)の色を指定できません。見出しの部分は、色を指定できます。

#### 編集 背景色(B)

表やグラフの背景色を指定します。表の背景色は、システムによって、基本16色とWindowsのシステムカラーしか利用で きない場合があります。その他の中間色は、それに近い、基本16色になります。グラフの背景色は、指定どうりに表示しま す。

#### 編集 すべてを選択(A)

見出しの部分を除き、ウィンドウ内のすべてのテキストを、選択状態にします。表の修正時に利用します。

#### 6-3. メニュー[表示]

表示 再表示(E) 右クリックメニュー

測定番号を、処理結果表のカーソルやスクロールバーで移動した時、処理結果グラフを連動して、表示する時に使います。

移動点(グラフマーク▼ で確認)が表示内であれば再表示しません。また、データ番号を生データ表のカーソルや、生デー

タグラフのスクロールバーで移動した時、生データグラフを連動して、表示する時に使います。メニュー[処理-表示の実行] のように、測定番号は+1されません。

## 表示 処理結果表(R)

処理結果の数値表を表示します。

# 表示 <u>処理結果のグラフ(S)</u>

処理結果グラフを表示します。

表示 生データ表(S) 📗

生データの数値表を表示します。

- 表示 <u>生データのグラフ(G)</u> Marking 生データグラフを表示します。
- 表示 <u>成分流速の2次元グラフ(X)</u> 成分流速の2次元グラフを表示します。
- 表示 パワースペクトル(P)

パワースペクトルグラフを表示します。

- 表示 <u>ツールバー(L)</u>
  - ツールバーの表示をオン/オフします。
- 表示 <u>ステータスバー(B)</u>

ステータスバーの表示をオン/オフします。

表示 スクロールバー(D)

スクロールバーの表示をオン/オフします。スクロールバーで測定番号を指定できます。

#### 6-4. メニュー[処理]

## 処理 表示の実行(E) **▶**

次の測定番号のデータを、表示します。連続表示するには、ツールバーのリストボックス 1 ● のダウンリストで 値を 選ぶか、キーインして、 ▶をクリックします。指定した測定回数分を、連続表示します。途中で中止したい時は、 ■をクリ ックします。

## 処理 表示の逆実行(B)◀

1つ手前の測定番号のデータを、表示します。逆連続表示するには、ツールバーのリストボックスのダウンリストで値を選ぶか、キーインして、 く をクリックします。指定した測定回数分を、逆方向に連続表示します。途中で中止したい時は、

■をクリックします。

# 処理 処理の実行(F) ▶このパッケージでは実行できません

測定回数をツールバーのリストボックスのダウンリストで値を選ぶか、キーインして指定します。 ▶をクリックして連続処 理できます。、途中で中止したい時は、 ■をクリックします。

処理 中止(C) ■

作業を、途中で中止します。

# 処理 条件の設定(J) 🕌

# 6-5. メニュー[ウィンドウ]

ウィンドウ 重ねて表示(C) 🛅

ウィンドウを、重ねて表示します。

# ウィンドウ 並べて表示(T) 💳

ウィンドウを、横に並べて表示します。

# ウィンドウ 縦に並べて表示(&V)

ウィンドウを、縦に並べて表示します。

# ウィンドウ 保護状態(B)

MagicProcessorKの状態(設定値や、ウィンドウの位置など)が、保護されているときにチェックが付きます。コマンドラインで指定して実行しない限り、通常は、チェックされてない状態です。MagicProcessorKの状態を変更し、クリックすると、その時の状態を、初期化ファイル(MK48i. ini)に保存します。チェックされてない場合は、メニュー[MagicProcessorKの終了]、[閉じる]などの操作時にも状態を保存します。MagicProcessorKを再実行すれば、終了した状態を復元できます。チェックされている場合は、チェックした時の状態を復元して再実行します。

# 6-6. メニュー[ヘルプ]

ヘルプ トピックの検索(H)

このアプリケーションの、ヘルプを表示します。

# ヘルプ バージョン情報(V)

このアプリケーションの、バージョン情報を表示します。

# 6-7. ポップアップメニュー(右クリックメニュー)

# 再表示(E)

表のカーソルやスクロールバーを移動した時、グラフを連動して、表示する時に使います。移動点(グラフマーク▼で確認)

が表示内であれば再表示しません。

# 拡大(Z)

X軸: グラフマーク▼を基準にして、X軸を拡大して再描画します。

Y軸: グラフのY軸方向を拡大して、再描画します。目盛の値は小さくなります。

## 縮小(&U)

X軸: グラフマーク▼を基準にして、X軸を縮小して再描画します。

Y軸: グラフのY軸方向を縮小して、再描画します。目盛の値は、大きくなります。

# 再処理(F)

指定されている測定番号だけを処理します。処理結果グラフに、その結果を表示していれば、グラフの位置は変わりません。結果の修正値を元にもどす時、使用できます。このパッケージでは実行できません。

#### 条件の設定(J)

#### 上書き保存(S) Ctrl+S

修正した生データ表の値で、マスターファイルを上書きします。生データの修正単位は、1測定分です。次の測定データを 表示する前に、保存して下さい。修正が処理結果表の時は、処理結果ファイルを、表の値で、上書きします。処理結果ファ イルの修正単位は、ファイル単位です。

#### 行のエラー値上書き保存(E) F2

処理結果ファイルの不要な部分(陸上のデータなど、表やグラフを見難くするデータを、1測定分、エラー値で上書きします。 この機能を利用して、表やグラフが、見やすくなるように整理します。

注意:このパッケージには、処理機能がないため、一度、エラー値で上書きすると、元に戻すことができません。元に戻すに は、アプリケーションを終了して、処理結果ファイル(WHxxxL. H10)を削除し、処理結果テキストファイル(WHxxxR. H1 0)を開いて、再度、処理結果ファイルを作り直します。

#### コピー(C) Ctrl+C

グラフのウィンドウを選択している時は、ウィンドウ全体を、クリップボードにコピーします。表の場合は、選択部分を、クリッ プボードにコピーします。メニュー[編集-すべてを選択]で、表全体を選択できます(見出しの部分は除きます)。修正時に 利用します。WordやExcelに、表やグラフを貼り付ける時も、利用します。

# ヘルプ(H)

このアプリケーションの、ヘルプを表示します。

# 6-8. ツールバー

各ボタンの説明は、6-1~6-7項のメニューの説明を参照してください。



# 7-1. ファイル

ファイルは、MK48. EXEのある、カレントフォルダに、置いて下さい。MagicProcessorKが、自動的に作成するファイルネームは、下記の要領で名付けられます。ファイルの詳細は、"データ構造説明書"を参照してください。

## ファイル名の例:WH101x. H10

部分	説明
WН	"WH"になります
101	本体の機械番号下3桁
x	M:マスターファイル(Mファイル) L:処理結果ファイル(Lファイル) R:処理結果テキストファイル(Rファイル) A:テキストデータファイル
. H10	". H10"になります (処理結果テキストファイル:". TXT")

# マスターファイル(WHxxxM. H10 パイナリーファイル)

バイナリーファイルです。生データを収録しています(Mファイルとも呼びます)。測定番号1から順にデータが入おり、SDカ ードに収録されています。マスターファイルが、カレントフォルダに存在しない状態で、処理結果テキストファイル(Rファイル) を開くと、疑似マスターファイルが作成されますので注意してください。疑似マスターファイルは、生データを含まないため、 再処理はできません。

#### 処理結果ファイル(WHxxxL. H10 テキストファイル)

MagicProcessorKが、計算した結果を、収録した、テキストファイルです(Lファイルとも呼びます)。Windows の"メモ帳" や、表計算ソフトで、そのまま読み込めます。下の書式になります。各項目番号に、処理結果が入ります。各項目は、5桁 の数値"#####"とコンマ","からなります。8項目毎にコンマの次にスペース""が入り、64項目まで繰り返します。最後にキ ャレッジリターン、ラインフィードが付きます。1測定分は392文字の固定長です。

#### 処理結果の書式(392文字/1測定結果)

項目番	号	01	02	03	04	05	06	07	08	09	10	• • • • •	63	64
書	式	#####,	#####,	#####,	#####,	#####,	#####,	#####,	#####,	#####,	#####,		#####,	#####CRLF

## 処理結果Rファイル(WHxxxR. H10 バイナリーファイル)

処理結果Rファイルは、120 バイトのヘッダー(バイナリー)と、392 バイトの処理結果テキストが、収録されています(Rファイ ルとも呼びます)。そのままでマスターファイルと同様に扱えます。SDカードにあります。

#### 処理結果テキストファイル(WHxxxR. TXT テキストファイル)

本体が、計算した結果を、収録したテキストファイルです(Rファイルとも呼びます)。内容は、Lファイルと同じですが、各処 理結果に加えて、最初の2行に処理結果項目名称と処理結果数値の単位が付加されています。SDカードにあります。

#### テキストデータファイル(WHxxxnnnnA. H10 テキストファイル)

マスターファイルは、メニュー[ファイルーテキストデータファイルに変換]で変換できます。下記は、変換したテキストデータ ファイルのフォーマットです。10分/60分(0.5秒サンプル)で、4チャンネルのデータを、収録したファイルは、下のような順 序でデータが入っています。

#### テキストファイルの内容

#### テキストファイルの項目の説明

17185,	0,	0,	226,	1520,	125	測定要素、	未定、	未定、	平均方位。	、平均水温.	機械番号
02,	35,	4,	1,	10,	60	年、	電圧、	チャンネル数、	測定番号	測定時間	測定間隔
1,	63,	50,	16,	7,	1	測定パラメーダ	1、測定パ	ラメータ 2、分、	時、	日、	月

2488, -3, 11, 2374 水圧(1)、 E流速(1)、 N流速(1)、 水位(1) -3, 13, 2377 水圧(2)、 E流速(2)、 N流速(2)、 水位(2) 2492. 2495, -2, 15, 2392 水圧(3)、 E流速(3)、 N流速(3)、 水位(3) . . . . . . 2492, 1, 9, 2394 水圧(1199)、E流速(1199)、N流速(1199)、水位(1199) 2491, 3, 8, 2394 水圧(1200)、E流速(1200)、N流速(1200)、水位(1200) 0, 0, 221, 1523, 125 17185. 02, 35, 4, 2, 10, 60 63, 50, 17, 7, 1 1, 3, 5, 2353 2459, 2, 4, 2356 2459,

### その他の関係ファイル

初期化ファイル(WH48i.ini)

オリジナル初期化ファイルをコピーしたファイルで、アプリケーションを実行する時に、読み込まれ、アプリケー ションの終了時に、その時の状態を保存するため上書きされます。

機種別オリジナル初期化ファイル(WH48i-nn.org)

カレントフォルダに、いくつかのオリジナル初期化ファイル"MK48i-nn.org"があります。あらかじ め機種に合わせた初期値が設定されています。内容は書き替えないで下さい。

## 測定要素項目ファイル(WH48f.org)

測定され、収録されているデータの要素(水圧、流速、水位など)の名称や、単位、表示のフォーマットなどを指 定しています。

処理結果項目ファイル(WH48g.org)

処理結果項目の一覧ファイルで、項目名、表示フォーマット、グラフスケールの初期値、係数などを指定していま す。

#### <u>測定条件設定ファイル(index62.txt)</u>

本体の測定条件を設定するためファイルで、本体のSDカードに置かれています。本体は、パワーオン時にSDカ ードのindex62.txtを読み込み、その設定条件に従い、自身の動作を決定します。

グラフファイル1(whnng.bmp)

アプリケーションが描画したグラフの画像ファイル(拡張子:BMP)です。

数値表ファイル(whnng. txt)

アプリケーションが作成した数値表のテキストファイルです。Webページにも使用されます。

- 7-2. 処理結果Rファイル(Rファイル)を開く [関連項目 処理結果グラフ 処理結果表の編集]
- SDカードからコピーした処理結果Rファイ ル(WHxxxR. H10)を、メニュー[ファイ ルー開く] →で開きます。
- メインウィンドウのタイトルバーで、ファイル 名を確認します。 ▶をクリックして[処理 結果表] のウインドウを表示します。 処理結果ファイル(WHxxxL. H10)が作 成されますのでタイトルバーで確認しま す。
- ステータスバーの、最終収録測定番号を 参考にして、処理する測定回数分を、ツー

🔒 処理結果表					• ×
月日 時分	最高波p H(m) T(s)	有義波p 平均 H(m) T(s)波向	水位P (m)	流速流向 水温 (m/s)   (°C)	測定 番号
7/26 08:50	5.10 14.1	3.03 14.3 SSE	23.62	0.16 SE 20.5	795 🔨
7/26 09:50 7/26 10:50	5.23 11.7 4 20 15 4	3.11 13.6 SSE 3 16 13 3 SSE	23.66	0.14 SSW 24.5 0 17 SSW 24 5	796 797
7/26 11:50	4.38 12.9	3.42 13.4 SSE	23.47	0.15 SW 24.9	798
7/26 12:50	4.85 13.0	3.26 13.7 SSE	23.27	0.11 SW 24.9	799
7/26 13:50	5.07 12.1	3.18 12.8 SSE	23.10	0.12 SSW 25.1	800
7/26 14:50 7/26 15:50	4.39 14.4 4.52 12.7	3.18 12.9 SSE 3.17 12.0 SSE	22.98	0.08 SSW 25.2 0.09 N 25.2	801 802
7/26 16:50	4.67 9.6	2.87 11.8 SSE	23.02	0.09 NNE 23.7	803
7/26 17:50 7/26 18:50	4.28 13.3 4.66 13.3	3.03 12.2 SSE 3.21 12.2 SSE	23.16 23.36	0.20 N 22.9 0.12 NNE 22.7	804 805
7/26 19:50	4.22 13.2	2.81 12.0 SSE	23.56	0.13 NNE 22.7	806
7/26 20:50	4.00 11.7	2.38 12.4 SSE 0 00 10 0 00E	23.72 22 00	0.18 NNE 22.7 n 1e NNE 22.7	807
<					> .:

ルバーのリストボックス 1 ご設定します。 ▶のクリックで、連続処理を開始して、処理結果表を完成させます。 [処 理ー中止] ■のクリックで中止できます。

 メニュー[表示 – 処理結果のグラフ] ²⁰²で、処理結果グラフを表示できます。表やグラフのフォーマットは、メニュー[処理 −条件の設定] ²⁰¹ – タブ[表]、[グラフ]で編集できます。測定番号を進めて表示するには、戻るにはをクリックします。

注1. 大きく測定番号を移動するときは、メインウィンドウ下の[スクロールバー]を使用します。

# 7-3. 測定日時の更新

- 1. MagicProcesserKを実行して、メニュー[ファイルー開く] デで、マスターファイル(WHxxxM. H10)、又は処理結果テキストファイル(WHxxxR. H10)を開き、[表示ー処理結果表] を表示します。
- 2. メニュー[ファイルー測定日時の更新]をクリックします。
- 下図の問い合わせがありますので、新しい測定開始日時を指定します。表示通りに、桁をずらさないで、日時をキーインします。
- 4. [OK]をクリックします。ステータスバーに"測定日時の更新中"を表示します。"測定日時の更新完了"の表示で終了で す。
- 注:マスターファイル(WHxxxM. H10)と、処理結果ファイル(WHxxxL. H10)の測定日時が変更されます。

則定日時の更新	×
測定日時を変更します。新しい測定開始日時 を指定してください。よろしいですか?	OK
	キャンセル
20/ 1/13 08:50 🗸	

7-4. 測定時間ー測定間隔の編集 – [関連項目 測定タイムチャート]

WH-608では、測定時間、測定間隔、測定開始時刻を設定しないで、パワーオンだけで、測定起動できます。その場合、この機能で観測終了後に、測定時間、測定間隔、測定開始時刻を設定して、マスターファイルを編集することができます。 注1:この機能は、原データが、連続測定で収録されている場合だけ有効です。

- 注2:この機能は、マスターファイルを編集するだけで、編集したマスターファイルを再処理する機能はありません。処理機能のあるMagicProcesserKで、再処理を実行してください。
- 1. MagicProcesserKを実行して、メニュー[ファイルー開く] IFで、マスターファイルを開き、表示します。
- 2. メニュー[ファイルー測定時間ー測定間隔の編集]をクリックします。
- 3. SDカードに収録されていたマスターファイルの最初の測定(測定番号1)の測定開始日時を、下図のように表示します。日時が、"22/ 1/ 1 00:00"のように、日時が設定されていない場合は、本来の測定開始日時で、下図の日時を上書きして訂正し、[OK]をクリックします。

測定開始日時の指定	x
現在のマスターファイルの測定開始日時です。 訂正する場合は、下記の日時を上書きしてくだ	OK
20	キャンセル
22/ 1/ 1 00:01	

4. 次に下図の問い合わせがありますので、新しく作成するマスターファイルの最初の測定(測定番号1)の測定開始日時を、 上書きして指定し、[OK]をクリックします。マスターファイルの最後の測定の日時を指定したい場合は、[終了日時]にチェ ックを入れてから、[OK]をクリックします。

作成するマスターファイルの測定開始日時の指定	×
これから作成するマスターファイルの測定開始日 時を指定して下さい。[終了日時]のチェックで、 測定終了日時も指定できます	OK キャンセル
22/12/10 10:50 ~	☑ 終了日時

5. 同様に、新しく作成するマスターファイルの最後の測定の日時を指定し、[OK]をクリックします。[終了日時]にチェックを 入れなかった場合は、この項はスキップされます。

作成するマスターファイルの測定終了日時の指定	x
これから作成するマスターファイルの測定終了日 時を指定して下さい	OK
	キャンセル
22/12/12 10:30 🗸	
6 是後に 編集後のファターファイルのデータの測	完時間と測定問隔を指定して

6. 最後に、編集後のマスターファイルのデータの測定時間と測定間隔を指定して、[OK]をクリックします。

作成するマスターファイルの測定時間と測定間隔の指定		x
現在の測定時間/測定間隔です。編集後の 測定時間/測定間隔を指定して下ざい	OK	
	キャンセル	]
10/10 ~		

7. 編集内容の確認が下図のようにありますので、[OK]をクリックして、編集を実行します。変更する場合は[キャンセル]して、2項からやり直してください。

測定時間と測定間隔編集の確認	x
測定時間=10(分)測定間隔=10(分)測定開 始時刻=22/12/10 10:50で、マスターファイル = WH014-221210-1050-1010mb10でを作成 します。完了後(こ、作成されたマスターファイルを 開いて処理して下さい。よろしいですか?	ОК <b>キ</b> ャンセル

8. 編集実行中は、ステータスバーに"マスターファイル編集中"を表示します。"マスターファイル編集中完了"の表示で終了 です。新しいマスターファイルをで、メニュー[ファイルー開く]

# 7-5. テキストデータファイルに変換

マスターファイル(バイナリーファイル)を、テキストデータファイルへ変換します。下記の手順で実行してください。

- 1. 変換するマスターファイル(WHxxxM. H10)を、メニュー[ファイルー開く] 🎾 で開きます。
- 2. メニュー[ファイルーテキストデータファイルに変換]をクリックして、下図のウィンドウ[テキストデータファイルに変換]で、開始測定番号と終了測定番号を指定し、[OK]をクリックします。デフォルトは、00001~10000となっています。変換中は、"変換中"と"測定番号"を表示し、終了すると"変換終了"を表示します。

テキストデータファイルに変換	×
wh125mh10 を変換します。開始、終了測定 番号を、必ず5桁で指定します。	ОК
1例:00100,00999 旧タイプは、1ファイル分の測定回数を指定しま す。例:00001,00010	キャンセル
00001,10000 🗸	□18ダイプ

- カレントフォルダに日別のフォルダ(WHxxxyyyymmdd, xxx=機械番号, yyyy=年, mm=月, dd=日)を作成し、1測 定分づつのテキストデータファイル(WHxxxnnnnA. H10, xxx=機械番号, nnnnn=測定番号)を作成します。メニュ ー[処理-中止(F7)]のクリックで変換を中止できます。
- 4. [旧タイプ]にチェックを入れる変換では、開始測定番号と終了測定番号を指定する代わりに、1ファイル分の測定回数を指定します。00001, 65530とした場合は、全てのデータを一つのテキストファイルに変換します。
- 注1:開始、終了測定番号の指定は、必ず5桁で指定してください。桁数が少ない場合は、前にゼロを加えます。例:00100, 00199

注2:処理結果テキストファイル(Rファイル)で作成された疑似マスターファイルでは、"変換不可"と表示します。また、"変換 中"を継続できない異常なデータがあった場合は、"変換失敗"を表示して終了します。

下は、変換されたテキストデータファイルの、フォーマットです。10分/60分(0.5秒サンプル)で、4チャンネルのデータを、収録したファイルは、下のような順序でデータが入っています。

テキストファイルの内容						テキストファイルの項目の説明					
17185,	0,	0,	226,	1520,	125	測定要素、	未定、	未定、	平均方位、	平均水温	、機械番号
22,	35,	4,	1,	10,	60	年、	電圧、	チャンネル数、	測定番号、	測定時間	、測定間隔
1,	63,	50,	16,	7,	1	測定パラメータ	1、測定パラメータ	2、分、	時、	日、	月
2488,	-3,	11,	2374			水圧(1)、	E 流速(1)、	N 流速(1)、	水位(1)		
2492,	-3,	13,	2377			水圧(2)、	E 流速(2)、	N 流速(2)、	水位(2)		
2495,	-2,	15,	2392			水圧(3)、	E 流速(3)、	N 流速(3)、	水位(3)		
• •											
• •											
2492,	1,	9,	2394			水圧(1199)	、E 流速(1199	)、N 流速(1199	)、水位(119	99)	
2491,	3,	8,	2394			水圧(1200)	、E 流速(1200	)、N 流速(1200	)、水位(120	00)	
17185,	0,	0,	221,	1523,	125						
02,	35,	4,	2,	10,	60						
1,	63,	50,	17,	7,	1						
2459,	3,	5,	2353								
2459,	2,	4,	2356								

# 7-6. 初期化ファイル

- カレントフォルダに、いくつかのオリジナル初期化ファイル(MK48i-nn. org)があります。この初期化ファイルに、アプリケーションを初期化するための設定値が保存されています。
- 1. メニュー[ファイルー初期化]をクリックすると右図の問い合わせが あります。
- クリックで、ダウンリストを開いて、対象の番号(右記の例では00)
   を選択して、[OK]をクリックします。
- オリジナルの初期化ファイルが、カレントの初期化ファイル(MK48
   i. ini)にコピーされて、アプリケーションが再実行されます。
- 注:完全にアプリケーションを初期化する場合は、メニュー[ファイルー閉じる]でファイルを閉じてから、メニュー[ファイルーア プリケーションの初期化]を実行します。

初期化ファイル(MK48i. ini)は必要な時、"メモ帳"で編集できます。オリジナルの初期化ファイル(MK48i-nn. org)は、 書き換えないようにしてください。

コマンドラインオプションの指定で、"MK48i. ini"の上書きを禁止できます。上書き禁止のときは、メニュー[ウィンドウー保 護状態]にチェックが付き、保護が有効になります。クリックしてチェックはずすと、一時的に、保護を解除できます。解除後、 グラフや表を変更し、再びクリックすると、その時の状態を、"MK48i. ini"に保存します。



メニュー[ウィンドウー保護状態]がチェックされていない場合は、メニュー[ファイルーMagicProcessorKの終了]、[閉じる] など、アプリケーション終了時の状態を、初期化ファイル(MK48i. ini)に保存します。次の実行時、現状を復元できます。

# 7-7. 測定条件設定ファイル(index62. txt)

11:Measurement time; 20(min.)
12:Measurement interval; 20(min.)
13:Sampling interval; 0.5(sec.)
14:Number of measurement channels; 4

15:Power-on date/time; 2022/1/1, 0:0:0 16:Measurement start time; 1:49

21:Height of water pressure gauge from sea bottom; 0.50(m)
22:Range of principal wave direction; 0 ~ 359(deg.)
23:Water level correction value; 0.00(m)
24:Limitation period of long periodic wave; 30 ~ 0(sec.)
25:Zero-compensation value for current velocity; E=0.00 N=0.00(m/s)
26:Angular deviation between due north and magnetic north; 0(deg.)
27:Coordinate transformation (y/n); n

31:Automatic sending interval; 10(min.)
32:Automatic sending start time; 2:12
33:Automatic sending count; 1
34:Automatic sending lag time; 0(sec.)
35:Send received data immediately(y/n); n
36:Automatic sending WHxxxR.TMP file(y/n); y
37:Automatic sending WHxxxR.TMP file(y/n); n
38:Automatic sending SMxxxR.TMP file(y/n); n
39:Automatic sending SMxxxR.TMP file(y/n); n

41:Number of result line in log; 1
42:No heading item name(y/n); y
43:Format of result line in log; 8,9,12,13,25,21,32,34,35,6,0,0,0,0,0
44:Set measurement number for data collection; Start=0 End=0
45:No logging(y/n); n
46:Limit communication time; 50(sec.)

 $\begin{array}{l} 51: Log \ file \ overwrite(y/n); \ n\\ 52: Data \ file \ overwrite(y/n); \ n\\ 53: KOBANZAME \ power \ off \ mode(y/n); \ y\\ 54: Setting \ the \ communication \ speed; \ 38400(baud) \end{array}$ 

_______

#### 設定値の説明

01:このファイルを WAVE HUNTER に送信します(y/n); n 01:Send this file to WAVE HUNTER(y/n); n [n]=noを[y]=yes にすると、このファイル(サーバー上の index62.txt)をそのまま、WAVE HUNTER に送ります。 01 項の "y=yes"を読んだ時点で、WAVE HUNTER に送信するので、01 項以後の項目は、KOBANZAME には届かないので無効です。 21-27 項の処理条件の変更を、WAVE HUNTER に設定するときに使用します。他の項目も有効にしておくと、その項目も WAVE HUNTER で変更されるので、必要な項目以外は//でコメント行にしておくか、削除しておきます 02:Start measurement of WAVE HUNTER(y/n); y 02:WAVE HUNTER の測定を開始します(y/n); y [y]では WAVE HUNTER は、パワーオンと同時に、SD カードの測定条件設定ファイル (index62. txt)の条件で、測定起動さ れます。[n]ではパワーオンで、本体は保管状態になります。本体とパソコンをケーブル接続し、オンライン制御します。 03:Stop measurement of WAVE HUNTER(y/n); n 03:WAVE HUNTER の測定を停止します(y/n); n WAVE HUNTER を測定停止にします。次に 02 項で測定起動されるまで、保管状態になります。 04:Reset measurement of WAVE HUNTER(y/n); n 04:WAVE HUNTER の測定をリセット(y/n); n WAVE HUNTERをリセットします。Pilot24からの初期化と違い、測定中でもリセットされます。 05:Start measurement of KOBANZAME(y/n); n 05:KOBANZAME の測定を開始します(y/n); n KOBANZAME24(SM-601)は、1CH(又は2CH)のアナログ入力を受け付け、自身でも測定収録できます。そのための測定起動 コマンドです。 06:Stop measurement of KOBANZAME(y/n); n 06:KOBANZAME の計測を停止します(y/n); n KOBANZAMEを測定停止にします。次に05項で測定起動されるまで、保管状態になります。 07:Reset measurement of KOBANZAME(y/n); n 07:KOBANZAME の測定をリセット(y/n); n KOBANZAMEをリセットします。Pilot24からの初期化と違い、測定中でもリセットされます。 08:Match WAVE HUNTER's clock to KOBANZAME's clock(y/n); n 08:WAVE HUNTERの時計をKOBANZAMEの時計に合 わせる(v/n): n WAVE HUNTER の時計を KOBANZAME の時計に合わせます。時計合わせは、UM04->KOBANZAME->WAVE HUNTER の順 序で、それぞれの通信時間などで誤差が出ます。WAVE HUNTER に一番遅れが出ます。 09:プロセスのリトライ回数:2 09:Process retry count; 2 KOBANZAME->UM-04->サーバとPPP,TCP/IP,FTP を使用して接続します。標準のリトライ回数は2回で、2回失敗すると KOBANZAME は強制的にリセットされます 11:Measurement time; 20(min.) 11:測定時間; 20(min.) 測定時間(1~60分)を指定します。 12:Measurement interval; 20(min.) 12:測定間隔; 20(min.) 測定間隔(1~240分)を指定します。 13:Sampling interval; 0.5(sec.) 13:サンプリング間隔; 0.5(sec.) サンプル間隔(1.0,0.5,0.2,0.1sec)を指定します。 14:Number of measurement channels: 4 14:測定チャンネルの数:4 測定チャンネル(1=水圧,2=水圧+水位,3=水圧+E流速+N流速、4=水圧+E流速+N流速+水位)を指定します。 15:Power-on date/time; 2022/1/1, 0:0:0 15:日付/時刻を設定します; 2022/1/1 0:0:0 パワーオン日時を設定します。(本体の時計はパワーオン で、この日時に設定されます) SD カードの index62.txt で使用でき ます。 16:Measurement start time; 1:49 16:測定開始時間; 0:0 測定開始時刻を指定します。上記のパワーオン日時(2022/1/1 0:0)で、この値を0:9に設定した場合は、パワーオンの9分 後に、予備測定状態になります。測定データの日時は、観測終了後に、SDカードのファイルをコピーして、メニュー[ファイル - 測定日時の更新]で、後から測定日時を割り付けることができます。 21:Height of water pressure gauge from sea bottom; 0.50(m) 21:海底からの水圧計の高さ; 0.50(m) 水圧変動を水位変動に換算する式に必要です。水圧計は、本体内に取り付けられています。水圧計の海底からの高さ(xx.x m)を、できるだけ正確に指定します。 22:Range of principal wave direction; 0 ~ 359(deg.) 22:主波方向の範囲; 0~359(deg.) 沿岸での波向観測では、陸からの波はないと考え、装置を設置した、海岸線の海側の方位の範囲を指定し、主波向の計算に、 正しい指標を与えます。常に、磁北から、時計回りの角度で指定してください。また、磁北をまたぐ時も、330~40のように、 時計回りで、指定してください。

23:Water level correction value; 0.00(m)

処理結果値を水深でなく、水位として表示したい場合は、その補正値(±値)が必要です。水位 = 水深 - 水位補正値で計 算されます。 24:Limitation period of long periodic wave;  $30 \sim 0$ (sec.) 24:長周期波の限界周期; 30~0(sec.) 長周期波の処理の周期指定を変更できます。長周期波フィルターの下(短い)限周期~上(長い)限周期を指定できます。 25:Zero-compensation value for current velocity; E=0.00 N=0.00(m/s) 25:流速のゼロ補正値: E=0.00 N=0.00(m/s) 平均 E 流速、平均 N 流速、それぞれの値を、直接、補正する値(±値)です。 26:Angular deviation between due north and magnetic north; 0(deg.) 26:真北と磁北の間の角度偏差; 0(deg.) 真北と磁北の偏角を逆時計回りで指定します。東京では7°。ゼロを指定した時の処理結果は、磁北からの向きになります。 27:Coordinate transformation (y/n); n 27:座標変換(y/n); n 座標変換を実行するかを決定します。y=座標変換する。n=座標変換しない 31:Automatic sending interval; 10(min.) 31:自動送信間隔; 10(min.) 自動送信間隔(分)を KOBANZAME へ指示します。 通常は WAVE HUNTER の測定間隔と同じで OK です 32:Automatic sending start time; 2:12 32:自動送信開始時間; 2:12 KOBANZAME に自動送信開始時刻を指定します。2:12 は、汎用自動送信開始時刻です。この値を基準に、現在時刻から、最 近の開始時刻を計算して設定します。31 項が 20 分の場合は、毎時、12,32,52 分に自動送信を開始します 33:Automatic sending count; 1 33:自動送信カウント:1 自動送信(定時通信)時に、送信するデータの測定回数を指定します。デフォルトでは WAVE HUNTER、KOBANZAME 共に 1 回分です。WAVE HUNTER は M ファイルと R ファイルを、処理終了後に自動送信します。 34:Automatic sending lag time; 0(sec.) 34:自動送信ラグタイム; 0(sec.) 35 項が[y]の時、有効になります。WAVE HUNTER、KOBANZAME で通信が重複しないようにするため、送信開始の待ち合わ せ時間を、0~255秒の間で指定します。1対1の通信では、指定不要です。 35:Send received data immediately(y/n); n 35:受信したデータをすぐに送信します(y/n); n WAVE HUNTER で[y]になっています。WAVE HUNTER は測定終了、処理終了後に、M ファイルとR ファイルをオンラインに出 カします。 KOBANZAME では[n]になっています。[n]の場合は自動送信が有効になります。もし、KOBANZAME で[y]にした場 合は、WAVE HUNTER から M ファイル、R ファイルの受信後、すぐにインターネットに接続してサーバーに送信します 下記の4つで、別の項目を[y]にする場合は、それまで[y]だった項目を必ず[n]に指定してください。 36:Automatic sending WHxxxR.TMP file(y/n); y 36:WHxxxR.TMP ファイルの自動送信(y/n); y KOBANZAME は、WAVE HUNTER から受信した処理結果Rファイル(Rファイル whxxxr.tmp 512byte)をサーバーに送信します 37:Automatic sending WHxxxM.TMP file(y/n); n 37:WHxxxM.TMP ファイルの自動送信(y/n); n KOBANZAME は、WAVE HUNTER から受信したマスターファイル(M ファイル whxxxm.tmp 19968byte(20 分 0.5sec 4CH))をサ ーバーに送信します 38:Automatic sending SMxxxR.TMP file(y/n); n 38:SMxxxR.TMP ファイルの自動送信(y/n); n KOBANZAME は、自身が測定した処理結果Rファイル(Rファイル smxxxr.tmp 512byte)をサーバーに送信します 39:Automatic sending SMxxxM.TMP file(y/n); n 39:SMxxxM.TMP ファイルの自動送信(y/n); n KOBANZAME は、自身が測定したマスターファイル(M ファイル whxxxm.tmp 5632byte(20 分 0.5sec 1CH))をサーバーに送信 します 41: ログ内の結果行の数:1 41:Number of result line in log; 1 ログに処理結果を何測定分表示するかを指定します。1の場合は下記のようになります 2/12 12:50 0.11 2.9 0.07 3.5 ----- 11.40 0.00 ----- 0.0 6 No. 003Ms[6](13:10 20/20 R=1.20m), 13:12:27[13:32]AT 4bar, 56dB, 3. 6v, 26s, 512byte, 0, 0, 0 1 行目は、WAVE HUNTER の処理結果(16 項目以内/64 項目を選択)を表示しています。左から順に 日時,最高波高,最高波周期,有義波高,有義波周期,平均波向,水深,流速,流向,水温,測定番号 2 行目は機械番号.装置状態.[測定番号](測定開始時刻,測定時間/測定間隔,R),送信完了時刻[次の送信時刻]定時送信(大 文字は UM-04 パワーオフモード),アンテナ本数,受信強度,電源電圧,送信バイト数,TCP エラー蓄積数,ハンター通信エラー蓄積 数,UM-04 接続リトライ蓄積回数 42:No heading item name(v/n): v 42:見出し項目名なし(y/n); y ログファイルの処理結果に、項目見出しを付けます。 43:Format of result line in log; 8,9,12,13,25,21,32,34,35,6,0,0,0,0,0,043: ログの結果行の形式,9,12,13,25,21,32,34,35,6,0,0,0,0,0,0 ログの処理結果のフォーマットを 64 項目の中から、16 項目選んで決めます。下記は、超音波波高に変更した指定です

43:Format of result line in log; 48,49,52,53,25,61,32,34,35,6,0,0,0,0,0,0

44:データ収集の測定番号を設定:開始=0 終了=0 44:Set measurement number for data collection;Start=0 End=0 自動送信で、データファイルを回収できなかった場合に、後の自動送信時に、過去の測定のMファイル、Rファイルを回収しま す。Start=回収開始測定番号、End=回収終了測定番号を指定します。ファイルは 36~39 項で指定されたファイルです。自動 送信では、ここで指定されているファイルを先に送信してから、予定のファイルを最後に送信します。 45:No logging(y/n); n 45:ログなし(y/n); n ログファイルを作成しない場合に[y]にします。 46:Limit communication time: 50(sec.) 46:通信時間を制限する: 50(sec.) 1回の自動送信のタイムアウト時間です。通信量に応じて長くする必要があります。Mファイル(20/20)を3測定分以上、送信 する場合は、長くする必要があります 51:Log file overwrite(y/n); n 51:ログファイルの上書き(y/n); n ログを上書きした場合は、ログファイルには、常に1自動送信分のログが残ります。 52:Data file overwrite(y/n); n 52:データファイルの上書き(y/n); n whxxxm.tmp,whxxxr.tmp,smxxxm.tmp,smxxxr.tmp は毎回上書きされ、蓄積されません。常に1測定分のデータが残ります 53:KOBANZAME power off mode(y/n); y 53:KOBANZAME パワーオフモード(y/n): y UM04-KO=パワーオフモード=接続のたびに、UM04の電源をON/OFFして通信します。

54:Setting the communication speed; 38400(baud) 54:通信速度の設定; 38400(ボー)

WAVE HUNTER のボーレートを変更する場合は、01 項と合わせて使用します

# 8-1. 表をExcelのセルに読み込むには

- 1. 表を、Excelのセルに入れるには、カレントフォルダの、ファイル"WH22G. TXT"、"WH23G. TXT"、"WH24G. TXT" を利用します。"WH22G. TXT"は、生データ表、"WH23G. TXT"には処理結果表 、"WH24G. TXT"にはスペクトルグ ラフの値が、そのまま入っていいます。これをExcelのセルに読み込みます。
- 2. Excelのメニュー[ファイルー開く]で、"WH22G. TXT"を選んで開きます。[テキストファイルウイザード]で、[データ形式] ー[カンマやタブなどの区切り....]または、[スペースによって右または左....]を選び、[次へ]をクリックします。
- 3. 区切りが、最適になるように調整して、[次へ]をクリックし、[完了]で値をセルに読み込むます。不用な列を削除して、フォ ーマットを整えます。

## 8-2. Excelで表の貼り付け

- 1. 通常のWindowsの"コピー"、"貼り付け"と同じです。表のコピーしたい部分を、マウスでドラッグして選択します。メニュー [編集-コピー]で、コピーします。
- 2. Excelの貼り付けたい場所に、カーソルを合せて、Excelのメニュー[編集 形式を選択して貼り付け]の、[貼り付ける形式] テキストを選んで貼り付けます。この場合は、単にテキストとして、貼り付けられます。

# 8-3. Excelでグラフの貼り付け

- 1. コピーしたいグラフのウィンドウを、クリックして選択します。メニュー[編集-コピー]で、コピーします。
- 2. Excelの貼り付けたい場所に、カーソルを合せて、Excelのメニュー[編集-形式を選択して貼り付け]の、[貼り付ける 形式] ービットマップを選んで貼り付けます。

## 8-4. Wordで 表の貼り付け

- 1. 通常のWindowsの"コピー"、"貼り付け"と同じです。表のコピーしたい部分を、マウスでドラッグして選択します。メニュー [編集-コピー]で、コピーします。
- 2. Wordの文章の、貼り付けたい場所に、カーソルを合せて、Wordのメニュー[編集 形式を選択して貼り付け]の、[貼り付ける形式] ーテキストを選んで貼り付けます。

# 8-5. Wordでグラフの貼り付け

- 1. コピーしたいグラフのウィンドウを、クリックして選択します。メニュー[編集-コピー]で、コピーします。
- 2. Wordの文章の、貼り付けたい場所に、カーソルを合せて、Wordのメニュー[編集-形式を選択して貼り付け]の、[貼り付ける形式]-ビットマップ(DIB)を選んで貼り付けます。

# 9-1. 測定タイムチャート

(1分)

測定時間、測定間隔、測定番号など、言葉の定義は、下図を参考にしてください。 オンライン制御時のタイムチャート 2:Start measurement of WAVE HUNTER(y/n); n

時間の経過方向────→





オフライン制御時のタイムチャート 2:Start measurement of WAVE HUNTER(y/n); y



